JMCER

A Review of Energy Harvesting System for Wireless Sensor Network Applications

  • Received
    June 9, 2024
  • Revised
    July 9, 2024
  • Accepted
    August 7, 2024
  • Published
    August 13, 2024

Authors

  • Wisam A. Younis
  • Shamil H. Hussein

Abstract:

Recent years have observed different techniques in Wireless Sensor Networks (WSNs), but energy is still a vital resource. The main limitations imposed are the cost and size, therefore, these sensor nodes are provided with a constrained amount of energy. So, there is a pressing requirement for energy harvesting. This paper presents a comprehensive overview of the energy harvesting systems for powered-battery wireless sensor nodes. These systems operated at 5G frequency bands such as 2.4GHz, 5.8GHz, and 6GHz, which included receiving antenna, rectifier circuit, impedance matching network, and load. The RF energy harvested from the surrounding environment by antenna, and converted to usable DC current using microwave Schottky rectifier diodes. There are different challenges presented in this study such as antenna structure design with resonant frequency bands, rectifier topologies with choosing diodes, and impedance matching for full integration of low power rectenna. The most important key parameters for these systems in order to evaluate are conversion efficiency and output voltage and power at the optimum load resistor. This review article summarizes the recent advances and the most important challenges in the 5G band energy harvesting systems for WSNs applications at the structures and topologies.

References:

AbdelGhany, O.M., Sobih, A.G., El-Tager, A.M., 2019. Outdoor RF spectral study available from cell-phone towers in sub-urban areas for ambient RF energy harvesting. IOP Conf. Ser. Mater. Sci. Eng. 610, 012086. https://doi.org/10.1088/1757-899X/610/1/012086

Aboualalaa, M., Mansour, I., Abdelrahman, A.B., Allam, A., Abo-zahhad, M., Elsadek, H., Pokharel, R.K., 2020. Dual-band CPW rectenna for low input power energy harvesting applications. IET Circuits Devices Syst. 14, 892–897. https://doi.org/10.1049/iet-cds.2020.0013

Afify, Y.M., Allam, A., Tanemasa, A., Abdel-Rahman, A.B., 2022. Wideband Circularly Polarized Antenna with Enhanced Gain and Wide Beamwidth for Energy Harvesting Applications, in: 2022 16th European Conference on Antennas and Propagation (EuCAP). IEEE, pp. 1–5.

Amer, A.A.G., Sapuan, S.Z., Nasimuddin, N., Alphones, A., Zinal, N.B., 2020. A Comprehensive Review of Metasurface Structures Suitable for RF Energy Harvesting. IEEE Access 8, 76433–76452. https://doi.org/10.1109/ACCESS.2020.2989516

Amri, M.M., Sabila, L.Y., 2023. 2.4 GHz Rectifier Antenna for Radiofrequency-based Wireless Power Transfer: Recent Developments, Opportunities, and Challenges. J. Elektron. Dan Telekomun. 23, 16–28.

Antony, S.M., Indu, S., Pandey, R., 2020. An efficient solar energy harvesting system for wireless sensor network nodes. J. Inf. Optim. Sci. 41, 39–50. https://doi.org/10.1080/02522667.2020.1714182

Arpanutud, K., Tontisirin, S., Chudpooti, N., Chalermwisutkul, S., 2022. Estimation of Harvested RF Energy Based on Survey of Ambient RF Power for Optimized Rectifier Design. Wirel. Commun. Mob. Comput. 2022.

Assogba, O., Mbodj, A., Diallo, A., 2020. Efficiency in RF energy harvesting systems: A comprehensive review. https://doi.org/10.1109/IBASE-BF48578.2020.9069597

Bui, G.T., Nguyen, D.-A., Seo, C., 2024. A Novel and Compact Design of High-Efficiency Broadband Rectifier for Energy Harvesting and Wireless Power Transfer. IEEE Access.

Cai, X., Geyi, W., Guo, Y., 2021. A compact rectenna with flat-top angular coverage for RF energy harvesting. IEEE Antennas Wirel. Propag. Lett. 20, 1307–1311.

Calautit, K., Nasir, D.S.N.M., Hughes, B.R., 2021. Low power energy harvesting systems: State of the art and future challenges. Renew. Sustain. Energy Rev. 147, 111230. https://doi.org/10.1016/j.rser.2021.111230

Cansiz, M., Altinel, D., Kurt, G.K., 2019. Efficiency in RF energy harvesting systems: A comprehensive review. Energy 174, 292–309. https://doi.org/10.1016/j.energy.2019.02.100

Chandravanshi, S., Katare, K.K., Akhtar, M.J., 2021. A flexible dual-band rectenna with full azimuth coverage. IEEE Access 9, 27476–27484.

Chong, G., Ramiah, H., Yin, J., Rajendran, J., Wong, W.R., Mak, P.-I., Martins, R.P., 2018. Ambient RF energy harvesting system: a review on integrated circuit design. Analog Integr. Circuits Signal Process. 97, 515–531. https://doi.org/10.1007/s10470-018-1320-4

Derbal, M.C., Nedil, M., 2023. High-Gain Circularly Polarized Antenna Array for Full Incident Angle Coverage in RF Energy Harvesting 11.

Derbal, M.C., Nedil, M., 2020. A high gain dual band rectenna for RF energy harvesting applications. Prog. Electromagn. Res. Lett. 90, 29–36.

Divakaran, S.K., Krishna, D.D., Nasimuddin, 2019. RF energy harvesting systems: An overview and design issues. Int. J. RF Microw. Comput. -Aided Eng. 29, e21633. https://doi.org/10.1002/mmce.21633

Duy, P.N., Ha-Van, N., Seo, C., 2020. A design of 5.8 GHz rectenna array for wireless energy harvesting applications, in: 2020 IEEE Wireless Power Transfer Conference (WPTC). IEEE, pp. 87–90.

Gao, S.-P., Zhang, H., 2019. Topology comparison of single-diode rectifiers: shunt diode vs. series diode, in: 2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo). IEEE, pp. 177–179.

Geran, F., Mirzababaee, N., Mohanna, S., 2021. RF power harvester using a broadband monopole antenna and a quad-band rectifier. Int. J. Ind. Electron. Control Optim. 4, 59–65.

Geyi, W., 2021. The method of maximum power transmission efficiency for the design of antenna arrays. IEEE Open J. Antennas Propag. 2, 412–430.

Huang, Y., Liang, J., Wang, Q., Chen, T., 2024. High-efficiency rectifying circuit for 5.8 GHz wireless RF energy harvesting applications. IEICE Electron. Express 21, 20230625–20230625.

Jan, N., Ashraf, S., Sheikh, J.A., 2022. High Gain Antenna Design of a Rectenna System for RF Energy Harvesting in Smart City Applications, in: 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). IEEE, pp. 1–5.

Karami, M.A., Moez, K., 2021. A Highly-Efficient RF Energy Harvester Using Passively-Produced Adaptive Threshold Voltage Compensation. IEEE Trans. Circuits Syst. Regul. Pap. 68, 4603–4615. https://doi.org/10.1109/TCSI.2021.3107149

Karim, R., Iftikhar, A., Ijaz, B., Ben Mabrouk, I., 2019. The Potentials, Challenges, and Future Directions of On-Chip-Antennas for Emerging Wireless Applications—A Comprehensive Survey. IEEE Access 7, 173897–173934. https://doi.org/10.1109/ACCESS.2019.2957073

Khan, D., Basim, M., Ali, I., Pu, Y., Keum, C., Hwang, Y., Yang, D., Kim, K.-Y., Lee, Lee, K.-Y., 2020. A Survey on RF Energy Harvesting System with High Efficiency RF-DC Converters 1, 13–30. https://doi.org/10.22895/jse.2020.0002

Khan, W., Raad, R., Tubbal, F., Mansour, G., 2022. Design of a compact antenna and rectifier for a dual band rectenna operating at 2.4 GHz and 5.8 GHz. https://doi.org/10.1109/TSSA56819.2022.10063929

Kim, S.-J., Kim, S., Lee, J.-H., Yu, J.-W., 2023. A Compact Broadband Stepped Bow-Tie Antenna for Ambient RF Energy Harvesting. IEEE Access.

Kiran, V.S., Saxena, P., Anveshkumar, N., 2020. Design of a Circularly Polarized Textile Antenna for RF Energy Harvesting, in: 2020 IEEE 4th Conference on Information & Communication Technology (CICT). IEEE, pp. 1–5.

Le, M.T., Pham, D.A., Vu, H.T., Ngo, V.D., Nguyen, Q.C., 2021. A Novel Dual-band Ambient RF Energy Harvesting System for Autonomous Wireless Sensor Node Application. Appl. Comput. Electromagn. Soc. J. 36, 1367.

Lee, Y.C., Ramiah, H., Choo, A., Churchill, K.K.P., Lai, N.S., Lim, C.C., Chen, Y., Mak, P.-I., Martins, R.P., 2023. High-Performance Multiband Ambient RF Energy Harvesting Front-End System for Sustainable IoT Applications—A Review. IEEE Access 11, 11143–11164. https://doi.org/10.1109/ACCESS.2023.3241458

Li, L., Xu, R., Cao, J., Li, X., Nan, J., 2024. A Compact Loop-Shaped Dual-Band Omnidirectional Rectenna for RF Energy Harvesting. Prog. Electromagn. Res. M 125.

Li, P., Long, Z., Yang, Z., 2021. RF Energy Harvesting for Batteryless and Maintenance-Free Condition Monitoring of Railway Tracks. IEEE Internet Things J. 8, 3512–3523. https://doi.org/10.1109/JIOT.2020.3023475

Liu, J., Huang, M., Du, Z., 2020. Design of compact dual-band RF rectifiers for wireless power transfer and energy harvesting. IEEE Access 8, 184901–184908.

Ma, D., Lan, G., Hassan, M., Hu, W., Das, S.K., 2020. Sensing, Computing, and Communication for Energy Harvesting IoTs: A Survey. IEEE Commun. Surv. Tutor. 22, 1222–1250. https://doi.org/10.1109/COMST.2019.2962526

Mansour, M.M., Torigoe, S., Yamamoto, S., Kanaya, H., 2021. Compact and simple high-efficient dual-band RF-DC rectifier for wireless electromagnetic energy harvesting. Electronics 10, 1764.

Mirzababaee, N., Geran, F., Mohanna, S., 2021. A radio frequency energy harvesting rectenna for GSM, LTE, WLAN, and WiMAX. Int. J. RF Microw. Comput-Aided Eng. 31, e22630.

Mouapi, A., Hakem, N., Kandil, N., 2020. Performances comparison of Shottky voltage doubler rectifier to support RF energy harvesting, in: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). IEEE, pp. 1–5.

Muhammad, S., Tiang, J.J., Wong, S.K., 2021. Design of Wideband Circular Slot Antenna for RF Energy Harvesting System. Proc. DIFCON 74.

Nguyen, D., Le Nguyen, H., Seo, C., 2020. An 5.8 GHz Cube-Shape Energy Harvesting System Based on PIN Antenna Arrays, in: 2020 IEEE Wireless Power Transfer Conference (WPTC). IEEE, pp. 201–204.

Pandey, R., Shankhwar, A.K., Singh, A., 2021. An improved conversion efficiency of 1.975 to 4.744 GHz rectenna for wireless sensor applications. Prog. Electromagn. Res. C 109, 217–225.

Pandey, R., Shankhwar, A.K., Singh, A., 2020. Design, analysis, and optimization of dual side printed multiband antenna for RF energy harvesting applications. Prog. Electromagn. Res. C 102, 79–91.

Prashad, L., Mohanta, H.C., Mohamed, H.G., 2023. A compact circular rectenna for RF-energy harvesting at ISM band. Micromachines 14, 825.

Ramalingam, L., Mariappan, S., Parameswaran, P., Rajendran, J., Nitesh, R.S., Kumar, N., Nathan, A., Yarman, B.S., 2021. The Advancement of Radio Frequency Energy Harvesters (RFEHs) as a Revolutionary Approach for Solving Energy Crisis in Wireless Communication Devices: A Review. IEEE Access 9, 106107–106139. https://doi.org/10.1109/ACCESS.2021.3098895

Sakai, N., Noguchi, K., Itoh, K., 2021. A 5.8-GHz band highly efficient 1-W rectenna with short-stub-connected high-impedance dipole antenna. IEEE Trans. Microw. Theory Tech. 69, 3558–3566.

Samir, A., Fawzy, A., Abd, H., 2019. Design of a Multi-Band U-Slot Microstrip Patch Antenna 14, 8735. https://doi.org/10.9790/2834

Santos, C., Jimenez, J.A., Espinosa, F., 2019. Effect of Event-Based Sensing on IoT Node Power Efficiency. Case Study: Air Quality Monitoring in Smart Cities. IEEE Access 7, 132577–132586. https://doi.org/10.1109/ACCESS.2019. 2941371

Saravanan, M., Priya, A., 2022. Design of Tri-Band Microstrip Patch Rectenna for Radio Frequency Energy Harvesting System. IETE J. Res. 68, 2410–2415. https://doi.org/10.1080/03772063. 2019.1705189

Sethi, W.T., n.d. Optical antennas for harvesting solar radiation energy.

Sharma, P., Singh, A.K., 2021. Compact ambient RF energy harvesting CPW Fed Antenna for WLAN, in: 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, pp. 596–600.

Shen, S., Zhang, Y., Chiu, C.-Y., Murch, R., 2019. An ambient RF energy harvesting system where the number of antenna ports is dependent on frequency. IEEE Trans. Microw. Theory Tech. 67, 3821–3832.

Sidhu, R., Ubhi, J., Agarwal, A., 2019. A Survey Study of Different RF Energy Sources for RF Energy Harvesting. https://doi.org/10.1109/ ICACTM.2019.8776726

Tafekirt, H., Pelegri-Sebastia, J., Bouajaj, A., Reda, B.M., 2020. A sensitive triple-band rectifier for energy harvesting applications. IEEE Access 8, 73659–73664.

Thal, H.L., 2018. Radiation efficiency limits for elementary antenna shapes. IEEE Trans. Antennas Propag. 66, 2179–2187.

Tran, L.-G., Cha, H.-K., Park, W.-T., 2017. RF power harvesting: a review on designing methodologies and applications. Micro Nano Syst. Lett. 5, 14. https://doi.org/10.1186/ s40486-017-0051-0

Ullah, Md.A., Keshavarz, R., Abolhasan, M., Lipman, J., Esselle, K.P., Shariati, N., 2022. A Review on Antenna Technologies for Ambient RF Energy Harvesting and Wireless Power Transfer: Designs, Challenges and Applications. IEEE Access 10, 17231–17267. https://doi.org/10.1109/ACCESS.2022.3149276

Ullah, Shakir, Ullah, Sadiq, Ahmad, I., Khan, W.U.R., Ahmad, T., Habib, U., Albreem, M.A., Alsharif, M.H., Uthansakul, P., 2021. Frequency reconfigurable antenna for portable wireless applications. Comput Mater Contin 68, 3015–3027.

Vinnakota, S.S., Kumari, R., Majumder, B., 2019. Dual‐polarized high gain resonant cavity antenna for radio frequency energy harvesting. Int. J. RF Microw. Comput. -Aided Eng. 29, 22003. https://doi.org/10.1002/mmce.22003

Vu, H.S., Nguyen, N., Ha-Van, N., Seo, C., Le, M.T., 2020. Multiband ambient RF energy harvesting for autonomous IoT devices. IEEE Microw. Wirel. Compon. Lett. 30, 1189–1192.

Wagih, M., Weddell, A.S., Beeby, S., 2020a. Rectennas for Radio-Frequency Energy Harvesting and Wireless Power Transfer: A Review of Antenna Design [Antenna Applications Corner]. IEEE Antennas Propag. Mag. 62, 95–107. https://doi.org/10.1109/MAP.2020.3012872

Wagih, M., Weddell, A.S., Beeby, S., 2020b. Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design [antenna applications corner]. IEEE Antennas Propag. Mag. 62, 95–107.

Wang, B., Cao, Z., Song, F., 2020. Design and evaluation of a T-shaped adaptive impedance matching system for vehicular power line communication. IEEE Access 8, 73843–73854.

Wang, Y., Zhang, J., Su, Y., Jiang, X., Zhang, C., Wang, L., Cheng, Q., 2022. Efficiency enhanced seven-band omnidirectional rectenna for RF energy harvesting. IEEE Trans. Antennas Propag. 70, 8473–8484.

Xia, Q., Chen, Y., Yang, C., Chen, B., Muhammad, G., Ma, X., 2020. Maximum efficiency points tracking for an ocean thermal energy harvesting system. Int. J. Energy Res. 44, 2693–2703. https://doi.org/10.1002/er.5055

Younan, M., Houssein, E.H., Elhoseny, M., Ali, A.A., 2020. Challenges and recommended technologies for the industrial internet of things: A comprehensive review. Measurement 151, 107198.

Zareianjahromi, S.A., Kamsani, N.A., Bin Rokhani, F.Z., Sidek, R.B.M., Hashim, S.J.B., 2022. A 1 V -21 dBm threshold voltage compensated rectifier for radio frequency energy harvesting. Indones. J. Electr. Eng. Comput. Sci. 27, 28. https://doi.org/10.11591/ijeecs.v27.i1.pp28-36

Zhang, P., Yi, H., Liu, H., Yang, H., Zhou, G., Li, L., 2020. Back-to-Back Microstrip Antenna Design for Broadband Wide-Angle RF Energy Harvesting and Dedicated Wireless Power Transfer. IEEE Access 8, 126868–126875. https://doi.org/10.1109/ACCESS.2020.3008551

Zhao, J., Subramanyam, G., Yue, H., 2020. A dual-band rectifying antenna design for RF energy harvesting, in: 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, pp. 415–418.

[fbcomments]