Abstract:
Energy harvesting systems have emerged as a promising solution for powering low-energy wireless devices, eliminating the need for frequent battery replacements in applications such as wireless sensor networks (WSNs), Internet of Things (IoT) devices, biomedical implants, and radio-frequency identification (RFID) systems. The RF energy harvesting (RFEH) system is an exception among energy harvesting techniques due to ambient RF signals from Wi-Fi, cellular networks, and other communication systems being readily available. The rectifier circuit is an important component of the RFEH systems which converts RF signals into usable DC power and operates at 5G frequency bands. This paper presents a comprehensive review of state-of-the-art rectifier topologies such as voltage doubler rectifier (VDR), reconfigurable rectifiers, differential drive rectifiers (DDR), and CMOS/Schottky diode-based designs. Different key challenges are discussed including power conversion efficiency (PCE%), adaptability to low input power environments, sensitivity, and broadband operation. Additionally, this paper describes the consideration of antenna structures and the impedance matching methods for maximizing energy harvesting and transferring. Finally, this review provides helpful guidance for researchers
of future RFEH systems and organizes the path for battery-less, sustainable wireless technology.
Keywords: Rectifier circuit topologies, Energy harvesting systems, Power conversion harvesting, Impedance matching networks, 5G bands.
REFERENCES
Abdulwali, Z.S., Alqahtani, A.H., Aladadi, Y.T., Alkanhal, M.A., Al-Moliki, Y.M., Aljaloud, K., Alresheedi, M.T., 2023. A High-Performance Circularly Polarized and Harmonic Rejection Rectenna for Electromagnetic Energy Harvesting. Sensors 23, 7725.
Aboulsaad, A.R., Mohieldin, A.N., Aboudina, M., Hussien, F., 2020. A switched-mode reconfigurable RF energy harvester with integrated storage controller, in: 2020 6th IEEE International Energy Conference (ENERGYCon). IEEE, pp. 133–136.
Bairappaka, S.K., Aljaidi, M., Cao, Y., Kharel, R., 2024. A novel design of broadband circularly polarized rectenna with enhanced gain for energy harvesting. IEEE Access.
Bakytbekov, A., Nguyen, T.Q., Zhang, G., Strano, M.S., Salama, K.N., Shamim, A., 2022a. Dual- function triple-band heatsink antenna for ambient RF and thermal energy harvesting. IEEE Open J. Antennas Propag. 3, 263–273.
Bakytbekov, A., Nguyen, T.Q., Zhang, G., Strano, M.S., Salama, K.N., Shamim, A., 2022b. Dual- Function Triple-Band Heatsink Antenna for Ambient RF and Thermal Energy Harvesting. IEEE Open J. Antennas Propag. 3, 263–273. https://doi.org/10.1109/OJAP.2022.3149392
Ballo, A., Privitera, M., 2023. Demystifying regulating active rectifiers for energy harvesting systems: a tutorial assisted by Verilog-A models. IEEE Access 11, 43891–43908.
Behera, B.R., Mishra, S.K., Alsharif, M.H., Jahid, A., 2023. Reconfigurable antennas for RF energy
harvesting application: Current challenges, and solutions from perspective. Electronics 12, 2723.
trends, design
Bougas, I.D., Papadopoulou, M.S., Boursianis, A.D., Kokkinidis, K., Goudos, S.K., 2021. State-of-the- art techniques in RF energy harvesting circuits, in: Telecom. MDPI, pp. 369–389.
Bui, G.T., 2024a. A Novel and Compact Design of High-Efficiency Broadband Rectifier for Energy Harvesting and Wireless Power Transfer. IEEE Access 12, 18714–18723.
Bui, G.T., Nguyen, D.-A., Seo, C., 2024b. A Novel and Compact Design of High-Efficiency Broadband Rectifier for Energy Harvesting and Wireless Power Transfer. IEEE Access 12, 18714–18723. https://doi.org/10.1109/ ACCESS.2024.3359645
Chun, A.C.C., Ramiah, H., Mekhilef, S., 2022. Wide power dynamic range CMOS RF-DC rectifier for RF energy harvesting system: A review. IEEE Access 10, 23948–23963.
Da Paz, H.P., Da Silva, V.S., Diniz, R., Trevisoli, R., Capovilla, C.E., Casella, I.R.S., 2023. Temperature analysis of Schottky diodes rectifiers for low-power RF energy harvesting applications. IEEE Access 11, 54122–54132.
Dai, H., Lu, Y., Law, M.-K., Sin, S.-W., Seng-Pan, U., Martins, R.P., 2015. A review and design of the on-chip rectifiers for RF energy harvesting, in: 2015 IEEE International Wireless Symposium (IWS 2015). IEEE, pp. 1–4.
Das, D., Xu, Z., Nasrollahpour, M., Martos-Repath, I., Zaeimbashi, M., Khalifa, A., Mittal, A., Cash, S.S., Sun, N.X., Shrivastava, A., Onabajo, M., 2023. Circuit-Level Modeling and Simulation of Wireless Sensing and Energy Harvesting With Hybrid Magnetoelectric Antennas for Implantable Neural Devices. IEEE Open J. Circuits Syst. 4, 139–155. https://doi.org/10.1109/ OJCAS.2023.3259233
Dawood Butt, A., Ahmad, S., Sajawal, M., Attiq, M.A., 2022. Design of an Efficient Rectenna for RF Energy Harvesting for IoT Medical Implants, in: Boulouard, Z., Ouaissa, Mariya, Ouaissa, Mariyam, El Himer, S. (Eds.), AI and IoT for Sustainable Development in Emerging Countries, Lecture Notes on Data Engineering and Communications Technologies. Springer International Publishing, Cham, pp. 487–503. https://doi.org/10.1007/978-3-030-90618-4_24
DeLong, B.J., Volakis, J.L., 2018. A radiating near- field patch rectenna for wireless power transfer to medical implants at 2.4 GHz. IEEE J. Electromagn. RF Microw. Med. Biol. 2, 64–69.
Derbal, M.C., Nedil, M., 2023. High-Gain Circularly Polarized Antenna Array for Full Incident Angle Coverage in RF Energy Harvesting. IEEE Access 11, 28199–28207. https://doi.org/10.1109/ ACCESS.2023.3259429
Diniz, R., Silva, V.S.D., Paz, H.P.D., Trevisoli, R., Casella, I.R.S., Capovilla, C.E., 2024. Proposal of a 2.4 GHz Rectifier With Temperature Range Trimming for Low-Power RF Energy Harvesting. IEEE Access 12, 167278–167287. https://doi.org/10.1109/ACCESS.2024.3492808
Du, J., 2024. A 2.4 GHz High-Efficiency Rectifier Circuit for Ambient Low Electromagnetic Power Harvesting. Sensors 24, 6854.
Eltresy, N.A., Elhamid, A.E.M.A., Elsheakh, D.M., Elhennawy, H.M., Abdallah, E.A., 2021. Silver Sandwiched ITO Based Transparent Antenna Array for RF Energy Harvesting in 5G Mid- Range of Frequencies. IEEE Access 9, 49476– 49486. https://doi.org/10.1109/ ACCESS.2021.3069409
Eshaghi, M., Rashidzadeh, R., 2024. A Versatile RF Energy Harvester for IoT Sensors in 5G Network With Extended Input Power Range. IEEE Access 12, 105939–105951. https://doi.org/10.1109/ ACCESS.2024.3436518
Essa, A., Almajali, E., Mahmoud, S., Amaya, R.E., Alja’Afreh, S.S., Ikram, M., 2024. Wireless power transfer for implantable medical devices: Impact of implantable antennas on energy harvesting. IEEE Open J. Antennas Propag.
Gimenez-Guzman, J.M., Leyva-Mayorga, I., Azarbahram, A., López, O.A., Popovski, P., 2024. Energy-Autonomous Roadside Nodes in V2I Using RF Energy Harvesting. IEEE Open J. Commun. Soc. 5, 4024–4035. https://doi.org/ 10.1109/OJCOMS.2024.3422030
Ha, T.D., Nie, X., Bağcı, H., Erricolo, D., Chen, P.- Y., 2024. A Low-Profile, Wide-Angle, and Bandwidth- Enhanced Rectenna for Radiative Energy Harvesting in the 12 GHz Band. IEEE Antennas Wirel. Propag. Lett. 23, 3807–3811. https://doi.org/10.1109/LAWP.2024.3387925
Halimi, M.A., Khan, T., Kishk, A.A., Antar, Y.M., 2022. Rectifier circuits for RF energy harvesting and wireless power transfer applications: A comprehensive review based on operating conditions. IEEE Microw. Mag. 24, 46–61.
Han, Y., Kim, E., Lee, H.L., 2025. Flat-Panel- Rectenna With Broad RF Energy Harvesting Coverage for Wireless-Powered Sensor Applications. IEEE Access 13, 6146–6153. https://doi.org/10.1109/ACCESS.2024.3524630
Han, Y., Kim, E., Lee, H.L., 2024. Flat-Panel- Rectenna with Broad RF Energy Harvesting Coverage for Wireless-Powered Sensor Applications. IEEE Access.
Huang, Y., Liang, J., Wang, Q., Chen, T., 2024. High- efficiency rectifying circuit for 5.8GHz wireless RF energy harvesting applications. IEICE Electron. Express 21, 20230625–20230625. https://doi.org/10.1587/elex.21.20230625
Hussein, Mohammed, 2023. A dual-band compact integrated rectenna for implantable medical devices. Int. J. Electron. Telecommun. 69.
Ibrahim, H.H., Singh, Islam, M.T., Alzamil, A., Islam, M.S., 2022. Radio frequency energy harvesting technologies: A comprehensive review on designing, methodologies, and potential applications. Sensors 22, 4144.
Keshavarz, R., Shariati, N., 2022. Highly Sensitive and Compact Quad-Band Ambient RF Energy Harvester. IEEE Trans. Ind. Electron. 69, 3609– 3621. https://doi.org/10.1109/TIE.2021.3075888
Khan, D., Oh, S.J., Shehzad, K., Basim, M., Verma, D., Pu, Y.G., Lee, M., Hwang, K.C., Yang, Y., Lee, K.-Y., 2020. An efficient reconfigurable RF- DC converter with wide input power range for RF energy harvesting. IEEE Access 8, 79310–79318.
Khan, W.A., Mansour, G., 2022. Design of a compact antenna and rectifier for a dual band rectenna operating at 2.4 GHz and 5.8 GHz, in: 2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA). Presented at the 2022 16th International Conference on Telecommunication Systems, Services, and Applications, IEEE, Lombok, Indonesia, pp. 1-5. https://doi.org/10.1109/ TSSA56819.2022.10063929
Kim, S.-J., Kim, S., Lee, J.-H., Yu, J.-W., 2023. A Compact Broadband Stepped Bow-Tie Antenna for Ambient RF Energy Harvesting. IEEE Access 11, 60365–60373. https://doi.org/10.1109/
ACCESS.2023.3286535
Kumar Bairappaka, S., Ghosh, A., Kaiwartya, O.,
Aljaidi, M., Cao, Y., Kharel, R., 2024. A Novel Design of Broadband Circularly Polarized Rectenna With Enhanced Gain for Energy Harvesting. IEEE Access 12, 65583–65594. https://doi.org/10.1109/ACCESS.2024.3397016
La Rosa, R., Demarchi, D., Carrara, S., Dehollain, C., 2024. High-Efficiency Reconfigurable CMOS RF-to-DC Converter System for Ultra-Low- Power Wireless Sensor Nodes with Efficient MPPT Circuitry. Chips 3, 49–68.
Lee, Y.C., Ramiah, H., Choo, A., Churchill, K.K.P., Lai, N.S., Lim, C.C., Chen, Y., Mak, P.-I., Martins, R.P., 2023. High-performance multiband ambient RF energy harvesting front-end system for sustainable IoT applications—A review. IEEE Access 11, 11143–11164.
Lian, W.X., Ramiah, H., Chong, G., Pakkirisami Churchill, K.K., Lai, N.S., Mekhilef, S., Chen, Y., Mak, P.-I., Martins, R.P., 2023. A Fully- Integrated CMOS Dual-Band RF Energy Harvesting Front-End Employing Adaptive Frequency Selection. IEEE Access 11, 74121– 74135. https://doi.org/10.1109/ACCESS.2023.3296145
Lu, Y., Dai, H., Huang, M., Law, M.-K., Sin, S.-W., Seng-Pan, U., Martins, R.P., 2016. A wide input range dual-path CMOS rectifier for RF energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 64, 166–170.
Mansour, M., Mansour, I., 2025a. Low power RF rectifiers based on class-E/F2 architecture for energy harvesting applications. AEU-Int. J. Electron. Commun. 188, 155600.
Mansour, M., Mansour, I., 2025b. Low power RF rectifiers based on class-E/F2 architecture for energy harvesting applications. AEU – Int. J. Electron. Commun. 188, 155600. https://doi.org/10.1016/j.aeue.2024.155600
Moloudian, G., Flynn, B., 2024. A Novel Rectenna With Class-F Harmonic Structure for Wireless Power Transfer. IEEE Trans. Circuits Syst. II Express Briefs 71, 617–621. https://doi.org/10.1109/TCSII.2023.3315152
Moloudian, G., Buckley, J.L., O’Flynn, B., 2023. A novel rectenna with class-F harmonic structure for wireless power transfer. IEEE Trans. Circuits Syst. II Express Briefs 71, 617–621.
Morsy, M.A., Saleh, K., 2022. Integrated Solar Mesh Dipole Antenna Based Energy Harvesting ystem. IEEE Access 10, 89083–89090.
https://doi.org/10.1109/ACCESS.2022.3201127 Mouapi, A., Kandil, 2019. A performance analysis of Schottky diode to support RF energy harvesting, in: 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI
Radio Science Meeting. IEEE, pp. 1169–1170. Muhammad, S., Jiat Tiang, J., Kin Wong, S., Iqbal, A., Alibakhshikenari, M., Limiti, E., 2020. Compact rectifier circuit design for harvesting
GSM/900 ambient energy. Electronics 9, 1614. Muttlak, S.G., Sadeghi, M., Ian, K., Missous, M., 2022. Low-cost compact integrated rectenna for implantable medical receivers. IEEE Sens. J. 22,
16938–16944.
Nadali, K., Kumar Maurya, N., McEvoy, P.,
Ammann, M.J., 2024. A Dual-Band Dual- Polarized Antenna for Harvesting in Cellular and Digital Terrestrial Television Bands. IEEE Open J. Antennas Propag. 5, 1489–1498. https://doi.org/10.1109/OJAP.2024.3407050
Nam, H., Nguyen, D.-A., Bui, G.T., Seo, C., 2023. A Novel Design of High-Efficiency Dual-Band Inverse Doherty Rectifier for Wireless Power Transfer and Energy Harvesting. IEEE Access 11, 143907–143912. https://doi.org/10.1109/ACCESS.2023.3343361
Niamien, C.M., 2022. Optimum antenna characteristics for maximally harvesting ambient RF energy. IEEE Open J. Antennas Propag. 3, 1364–1381.
Noghabaei, S.M., Radin, R.L., Savaria, Y., Sawan, M., 2021. A high-sensitivity wide input-power- range ultra-low-power RF energy harvester for IoT applications. IEEE Trans. Circuits Syst. Regul. Pap. 69, 440–451.
Odiamenhi, M., Jahanbakhsh Basherlou, H., Hwang See, C., Ojaroudi Parchin, N., Goh, K., Yu, H., 2024. Advancements and challenges in antenna design and rectifying circuits for radio frequency energy harvesting. Sensors 24, 6804.
Pandey, R., Shankhwar, A.K., Gupta, R., 2024. High- Efficiency Multiband Rectifier for RF Energy Harvesting Applications. Microw. Rev. 30.
Paz, H.P.D., Silva, V.S.D., Diniz, R., Trevisoli, R., Capovilla, C.E., Casella, I.R.S., 2023. Temperature Analysis of Schottky Diodes Rectifiers for Low-Power RF Energy Harvesting Applications. IEEE Access 11, 54122–54132. https://doi.org/10.1109/ACCESS.2023.3281794
Pozar, D.M., 2012. Microwave engineering. Fourth Ed. Univ. Mass. Amherst John Wiley Sons Inc 26–30.
Prashad, L., Mohanta, H.C., Mohamed, H.G., 2023. A Compact Circular Rectenna for RF-Energy Harvesting at ISM Band. Micromachines 14, 825. https://doi.org/10.3390/mi14040825
Reddaf, A., Boudjerda, M., Bouchachi, I., Babes, B., Elrashidi, A., AboRas, K.M., Ali, E., Ghoneim, S.S., Elsisi, M., 2024a. Modeling of Schottky diode and optimal matching circuit design for low power RF energy harvesting. Heliyon 10.
Reddaf, A., Boudjerda, M., Bouchachi, I., Babes, B., Elrashidi, A., AboRas, K.M., Ali, E., Ghoneim, S.S., Elsisi, M., 2024b. Modeling of Schottky diode and optimal matching circuit design for low power RF energy harvesting. Heliyon 10.
Roy, S., Azad, A.W., Baidya, S., Khan, F., 2021. A comprehensive review on rectifiers, linear regulators, and switched-mode power processing techniques for biomedical sensors and implants utilizing in-body energy harvesting and external power delivery. IEEE Trans. Power Electron. 36, 12721–12745.
Roy, S., Tiang, J.-J., Roslee, M.B., Ahmed, Md.T., Kouzani, A.Z., Mahmud, M.A.P., 2022. Design of a Highly Efficient Wideband Multi-Frequency Ambient RF Energy Harvester. Sensors 22, 424. https://doi.org/10.3390/s22020424
Sanislav, T., Mois, G.D., Zeadally, S., Folea, S.C., 2021. Energy harvesting techniques for internet of things (IoT). IEEE Access 9, 39530–39549.
Shin, J., Oh, J., 2024. High Efficiency Class-F Rectifier Based on Harmonic-Controlled Voltage Doubler With Extended Input Power and Frequency Range. IEEE J. Microw.
Smyth, B.P., Khoshniyat, H., Barati, M., Clark, S., Mirzavand, R., Iyer, A.K., 2024. Energy autonomous dual-band antenna system for RFID- based real-time battery level monitoring. IEEE Open J. Antennas Propag.
Ullah, M.A., Keshavarz, R., Abolhasan, M., Lipman, J., Esselle, K.P., Shariati, N., 2022. A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: Designs, challenges and applications. IEEE Access 10, 17231–17267.
Wagih, M., Hillier, N., Yong, S., Weddell, A.S., Beeby, S., 2021. RF-Powered Wearable Energy Harvesting and Storage Module Based on E- Textile Coplanar Waveguide Rectenna and Supercapacitor. IEEE Open J. Antennas Propag. 2, 302–314. https://doi.org/10.1109/ OJAP.2021.3059501
Wagih, M., Weddell, A.S., Beeby, S., 2020. Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design [antenna applications corner]. IEEE Antennas Propag. Mag. 62, 95–107.
Xu, Z., Khalifa, A., Mittal, A., Nasrollahpourmotlaghzanjani, M., Etienne- Cummings, R., Sun, N.X., Cash, S.S., Shrivastava, A., 2022. Analysis and design methodology of RF energy harvesting rectifier circuit for ultra-low power applications. IEEE Open J. Circuits Syst. 3, 82–96.
Younis, W.A., Hussein, S.H., 2024. A Review of Energy Harvesting System for Wireless Sensor Network Applications. JMCER 2024, 44–58.
Zhang, Z., Zhan, C., Law, M.-K., Jiang, Y., Mak, P.- I., Martins, R.P., 2021. A High-Efficiency Dual- Antenna RF Energy Harvesting System Using Full-Energy Extraction With Improved Input Power Response. IEEE Open J. Circuits Syst. 2, 436–444. https://doi.org/10.1109/ OJCAS.2021.3077621.