Abstract: This article presents a review of different types of miniaturized rectenna integrated circuits (IC) used for energy harvesting applications such as wearable applications. Two fundamental parts make up the rectenna design: a receive antenna that gathers radio-frequency (RF) energy from the ambient and a rectifier circuit that converts RF energy into DC voltage for use in low-power electronics devices like wearable medical devices (WMDs). In order to increase conversion efficiency and output power at a specific input power and suitable load resistance, microwave Schottky diodes from the HSMS-28xx and SMS-76xx series are utilized as a voltage doubler rectifier (VDR) integrated with a wearable antenna. The miniaturization, patient safety, biocompatibility, operating frequency, insensitivity to detuning, and conversion efficiency are some of the many challenges in the design of wearable rectenna IC. This review paper provides an overview of the entire body of research on rectennas conducted for novel design approaches in wearable devices operating at industrial, scientific, and medical (ISM) bands like 2.4GHz, 915MHz, and 415MHz.
Keywords: Energy Harvesting System, Wearable Sensors, Rectifier Circuits, and Wearable Antenna
References
Abd Rahman, N.H., Yamada, Y., Amin Nordin, M.S., 2019. Analysis on the Effects of the Human Body on the Performance of Electro-Textile Antennas for Wearable Monitoring and Tracking Application. Materials 12, 1636. https://doi.org/10.3390/ma12101636
Abdul-Al, M., Abd-Alhameed, R.A., 2022. Wireless Electromagnetic Radiation Assessment Based on the Specific Absorption Rate (SAR): A Review Case Study. Electronics 11, 511. https://doi.org/10.3390/ electronics11040511
Abidin, N., Nordin, N.M., 2023. Performances of Multi-Configuration Piezoelectric Connection with AC-DC Converter in Low Frequency Energy Harvesting System. J. Phys. Conf. Ser. 2550, 012001. https://doi.org/10.1088/1742 6596/2550/1/012001
Aldhaibani, J.A., Mahmood, A.A., 2024. Development of wearable textile patch antenna 2.43 GHz for biomedical applications. Int. J. Adv. Technol. Eng. Explor. 11, 177.
Alkhalaf, H.Y., Ahmad, M.Y., Ramiah, H., 2022. Design of Rectifier Circuit to Harvest the RF Energy for Wearable Medical Devices, in: Usman, J., Liew, Y.M., Ahmad, M.Y., Ibrahim, F. (Eds.), 6th Kuala Lumpur International Conference on Biomedical Engineering 2021, IFMBE Proceedings. Springer International Publishing, Cham, pp. 381–388. https://doi.org/10.1007/978-3-030-90724-2_41
Alkhalaf, H.Y., Ramiah, H., Hossain, A.Z., Azam, S.K., Thiha, A., 2024. Flexible Meta-Patch Rectenna Array for Energizing Low-Power Wearable Medical Sensors. IEEE Access.
Antonio Estrada, J., Segovia-Vargas, D., Barton, T., Popovic, Z., 2020. RF-Harvesting Tightly Coupled Rectenna Array Tee-Shirt with Greater Than Octave Bandwidth. IEEE Trans. Microw. Theory Tech. 68, 3908–3919. https://doi.org/10.1109/TMTT.2020.2988688
Ashyap, A., Abbasi, Q.H., 2020. Robust and Efficient Integrated Antenna With EBG-DGS Enabled Wide Bandwidth for Wearable Medical Device Applications. IEEE Access 8, 56346–56358. https://doi.org/10.1109/ACCESS.2020.2981867
Ashyap, A., Atrash, M., 2021. Fully Fabric High Impedance Surface-Enabled Antenna for Wearable Medical Applications. IEEE Access 9, 6948–6960. https://doi.org/10.1109/ ACCESS.2021.3049491
Ashyap, A.Y.I., Zainal Abidin, Z., Dahlan, S.H., Majid, H.A., Shah, S.M., Kamarudin, M.R., Alomainy, A., 2017a. Compact and Low-Profile Textile EBG-Based Antenna for Wearable Medical Applications. IEEE Antennas Wirel. Propag. Lett. 16, 2550–2553. https://doi.org/10.1109/LAWP.2017.2732355
Ashyap, A.Y.I., Dahlan, Majid, H.A., Shah, S.M., Kamarudin, M.R., Alomainy, A., 2017b. Compact and Low-Profile Textile EBG-Based Antenna for Wearable Medical Applications. IEEE Antennas Wirel. Propag. Lett. 16, 2550–2553.https://doi.org/10.1109/LAWP.2017.2732355
Atan, S.A., Jakiwa, J., Azli, M.S., Rustam, S.F., Zaki, I., 2024. Validation of Mi Band Smart Watch for Fitness Tracking. J. Med. Device Technol. 3, 9–14. https://doi.org/10.11113/jmeditec.v3.48
Bait-Suwailam, M.M., I. Labiano, I., Alomainy, A., 2020. Impedance Enhancement of Textile Grounded Loop Antenna Using High-Impedance Surface (HIS) for Healthcare Applications. Sensors 20, 3809. https://doi.org/10.3390/s20143809
Bakogianni, S., Tsolis, A., Angelaki, C., Alexandridis, A.A., 2024. On the Development of Embroidered Reconfigurable Dipole Antennas: A Textile Approach to Mechanical Reconfiguration. Electronics 13, 3649. https://doi.org/10.3390/electronics13183649
Chakraborty, A., Lucarelli, G., Xu, J., Skafi, Z., Castro-Hermosa, S., Kaveramma, A.B., Balakrishna, R.G., Brown, T.M., 2024. Photovoltaics for indoor energy harvesting. Nano Energy 109932.
Chen, G., 2024. Design and Application of Scenario-Based Perception of Smart Wearable Device Interaction Method. Int. J. Interact. Mob. Technol. IJIM 18, 69–81. https://doi.org/10.3991/ijim.v18i13.49071
Chen, Z., Vandenbosch, G., Zheng, X., 2024. Wearable Antenna and Rectenna Designs for WBAN and H-IoT Applications.
Cheriyan, R., Cherian, B.B., 2023. RF Energy Harvesting Rectenna for Wearable Applications, IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE). Kerala, India, pp. 1–7. https://doi.org/10.1109/RASSE60029.2023.10363619
Chi, Y.-J., Lin, C.-H., Chiu, C.-W., 2020. Design and modeling of a wearable textile rectenna array implemented on Cordura fabric for batteryless applications. J. Electromagn. Waves Appl. 34, 1782–1796. https://doi.org/10.1080/ 09205071.2020.1787869
Dai, H., Lu, Y., Law, M.-K., Sin, S.-W., Seng-Pan, U., Martins, R.P., 2015. A review and design of the on-chip rectifiers for RF energy harvesting, in: 2015 IEEE International Wireless Symposium (IWS 2015). IEEE, pp. 1–4.
Dam, T.H., Le, M.T., Nguyen, Q.C., Nguyen, T.T., 2023. Dual-Band Metamaterial-Based EBG Antenna for Wearable Wireless Devices. Int. J. RF Microw. Comput.-Aided Eng. 2023, 1–11. https://doi.org/10.1155/2023/2232674
Dilruba Geyikoglu, M., 2023. A novel UWB flexible antenna with dual notch bands for wearable biomedical devices. Analog Integr. Circuits Signal Process. 114, 439–450. https://doi.org/10.1007/s10470-023-02146-y
Ejaz, A., Jabeen, I., Khan, Z.U., Alomainy, A., Aljaloud, K., Alqahtani, A.H., Hussain, N., Hussain, R., Amin, Y., 2023. A High Performance All-Textile Wearable Antenna for Wristband Application. Micromachines 14, 1169. https://doi.org/10.3390/mi14061169
Huang, R., Liao, L., Zhang, Y., 2024. An On-Body Flexible Wireless Energy Harvesting Metasurface Operating in 5.8 GHz Band, IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI). Firenze, Italy, pp. 1781–1782. https://doi.org/10.1109/AP-S/INC-USNC-URSI52054.2024.10685907
Huang, Z., Wu, H., Mahmoud, S.S., Fang, Q., 2022. Design of a Novel Compact MICS Band PIFA Antenna for Implantable Biotelemetry Applications. Sensors 22, 8182. https://doi.org/10.3390/s22218182
Hussein, S.H., Mohammed, K.K., 2023. A Review of Miniaturized Advanced IC Rectenna for Energy Harvesting Applications. Al-Rafidain Eng. J. AREJ 28, 145–164.
Ihlou, S., El Abbassi, A., El Bakkali, A., Tizyi, H., 2023. Circuit Analysis of Series and Shunt Rectifier Topologies for RF Energy Harvesting Applications at 5.80 GHz, in: Farhaoui, Y., Rocha, A., Brahmia, Z., Bhushab, B. (Eds.), Artificial Intelligence and Smart Environment, Lecture Notes in Networks and Systems. Springer International Publishing, Cham, pp. 319–324. https://doi.org/10.1007/978-3-031-26254-8_45
Ishihara, M., Konishi, A., Hiraki, E., 2024. Feasibility of Active Reactance Compensator for Autonomously Maximizing Repeater Coil Current of Wireless Power Transfer System Against Variations in Resonant Frequency and Magnetic Coupling Intensity. IEEE Access 12, 98175–98188. https://doi.org/10.1109/ ACCESS.2024.3428864
Jokic, P., Magno, M., 2017. Powering smart wearable systems with flexible solar energy harvesting, in: 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp. 1–4.
Joshi, R., Podilchak, S.K., 2020. Dual-Band, Dual-Sense Textile Antenna with AMC Backing for Localization Using GPS and WBAN/WLAN. IEEE Access 8, 89468–89478. https://doi.org/10.1109/ACCESS.2020.299337
Khan, U.R., Amin, R., Ashraf, S., Ahmed, S., 2022a. Design of a Compact Hybrid Moore’s Fractal Inspired Wearable Antenna for IoT Enabled Bio-Telemetry in Diagnostic Health Monitoring System. IEEE Access 10, 116129–116140. https://doi.org/10.1109/ACCESS.2022.321944
Khan, U.R., Sheikh, J.A., Junaid, A., Amin, R., Ashraf, S., Ahmed, S., 2022b. Design of a Compact Hybrid Moore’s Fractal Inspired Wearable Antenna for IoT Enabled Bio-Telemetry in Diagnostic Health Monitoring System. IEEE Access 10, 116129–116140. https://doi.org/10.1109/ACCESS.2022.321944
Khattak, R.Y., Ahmed, Q.Z., Shoaib, S., Lazaridis, P.I., Alade, T.T., 2024. Recent Advances in Antennas for Biotelemetry and Healthcare Applications. IEEE Open J. Antennas Propag. 5, 1499–1522. https://doi.org/10.1109/OJAP.2024.3462289
Khokher, B., Patil, A.B., Patra, B.L., 2024. A Comprehensive Study of wearable Microstrip Patch Antennas for Biomedical Applications, in: 2024 International Conference on Computational Intelligence for Green and Sustainable Technologies (ICCIGST). IEEE, pp. 1–6.
Li, L., Jiang, Y., 2024. Design of Synchronous RF-DC Rectifier for Energy Harvesting System. Int. J. Electron. 111, 442–464. https://doi.org/10.1080/00207217.2022.2164076
Lin, C.-H., Chiu, C.-W., Gong, J.-Y., 2018. A wearable rectenna to harvest low-power RF energy for wireless healthcare applications, in: 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, pp. 1–5.
Liu, J., Huang, M., Martins, R.P., 2022. RF Rectifiers with Wide Incident Angle of Incoming Waves Based on Rat-Race Couplers. IEEE Trans. Microw. Theory Tech. 70, 1983–1993. https://doi.org/10.1109/TMTT.2021.3132331
Lv, D., Jiang, Q., Shang, Y., Liu, D., 2022. Highly efficient fiber-shaped organic solar cells toward wearable flexible electronics. Npj Flex. Electron. 6, 38.
Modak, S., Rambabu, K., 2024a. Design and Performance Measurement of Worn-on-Body Instrumental Ultra-Miniaturized UWB Wearable Patch for e-Health Monitoring. IEEE Access 12, 25719–25730. https://doi.org/10.1109/ACCESS.2024.336593
Modak, S., Khan, T., Kanaujia, B.K., Matekovits, L., Rambabu, K., 2024b. Design and Performance Measurement of Worn-on-Body Instrumental Ultra-Miniaturized UWB Wearable Patch for e-Health Monitoring. IEEE Access 12, 25719–25730.https://doi.org/10.1109/ACCESS.2024.3365938
Morsy Ismail, M.A., Saleh, K., 2024. Novel two-dimensional radio frequency energy harvesting system: Design and implementation. AIP Adv. 14.
Muhammad, S., Jiat Tiang, J., Kin Wong, S., Iqbal, A., Alibakhshikenari, M., Limiti, E., 2020. Compact Rectifier Circuit Design for Harvesting GSM/900 Ambient Energy. Electronics 9, 1614. https://doi.org/10.3390/electronics9101614
Mustafa, A.B., Rajendran, T., 2022. Wearable Multilayer Patch Antenna with Electromagnetic Band Gap Structure for Public Safety Systems. IETE J. Res. 68, 2979–2988. https://doi.org/10.1080/03772063.2020.1739572
Nakamura, M., Yamashita, I., 2024. Thermoelectric cloths using carbon nanotube yarn for wearable electronics. Jpn. J. Appl. Phys. 63, 010803. https://doi.org/10.35848/1347-4065/acffd3
Oh, T., Lim, T., Lee, Y., 2022. A Self-Matching Rectifier Based on an Artificial Transmission Line for Enhanced Dynamic Range. IEEE Trans. Circuits Syst. Regul. Pap. 69, 2225–2234.https://doi.org/10.1109/TCSI.2022.3140468
Pandey, R., Shankhwar, A.K., Singh, A., 2021. AN IMPROVED CONVERSION EFFICIENCY OF 1.975 TO 4.744 GHZ RECTENNA FOR WIRELESS SENSOR APPLICATIONS. Prog. Electromagn. Res. C 109, 217–225. https://doi.org/10.2528/PIERC20121102
Pei, R., Leach, M.P., Lim, E.G., Wang, Z., Song, C., Wang, J., Zhang, W., Jiang, Z., Huang, Y., 2020. Wearable EBG-Backed Belt Antenna for Smart On-Body Applications. IEEE Trans. Ind. Inform. 16, 7177–7189. https://doi.org/10.1109/TII.2020.2983064
Pradeep Dhanawade, Shivajirao M. Sangale, Pritam Nikam, Jayendra Kumar, 2024. Rectifiers Configurations for Rectenna Design. Int. Res. J. Adv. Eng. Hub IRJAEH 2, 66–72. https://doi.org/10.47392/IRJAEH.2024.0014
Rabah, H., Albasha, L., Mir, H., Quadir, N., Abbas, S.Z., 2025. High-Efficiency, Low-Loss, and Wideband 5.8 GHz Energy Harvester Designed Using TSMC 65 nm Process for IoT Self-Powered Nodes. Energies 18, 862.
Rao, A.S., Aziz, A., Aljaloud, K., Qureshi, M.A., Muhammad, A., Rafique, A., Hussain, R., 2022. Concomitance of radio frequency energy harvesting and wearable devices: A review of rectenna designs. Int. J. RF Microw. Comput.-Aided Eng. 32. https://doi.org/10.1002/mmce.23536
Razak, I.S.A., Hamid, Z., 2021. Optimization of Rectifying Circuit for RF Energy Scavenging. ANP J. Soc. Sci. Humanit. 2, 60–67.
Ren, Z., Zheng, Q., Wang, H., Guo, H., Miao, L., Wan, J., Xu, C., Cheng, S., Zhang, H., 2020. Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film. Nano Energy 67, 104243.
Sabban, A., 2024a. Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications. Fractal Fract. 8, 100. https://doi.org/10.3390/fractalfract8020100
Sabban, A., 2024b. Novel Meta-Fractal Wearable Sensors and Antennas for Medical, Communication, 5G, and IoT Applications. Fractal Fract. 8, 100. https://doi.org/10.3390/fractalfract8020100
Sabban, A., 2022. Wearable Circular Polarized Antennas for Health Care, 5G, Energy Harvesting, and IoT Systems. Electronics 11, 427. https://doi.org/10.3390/electronics11030427
Saeed, S.M., Balanis, C.A., Birtcher, C.R., Durgun, A.C., Shaman, H.N., 2017. Wearable Flexible Reconfigurable Antenna Integrated With Artificial Magnetic Conductor. IEEE Antennas Wirel. Propag. Lett. 16, 2396–2399. https://doi.org/10.1109/LAWP.2017.2720558
Saha, R., Kaffash, Z., Mirbozorgi, S.A., 2024. Multi-resonator wireless inductive power link for wearables on the 2D surface and implants in 3D space of the human body. IEEE Trans. Biomed. Circuits Syst.
Saifi, S., Xiao, X., Cheng, S., Guo, H., Zhang, J., Müller-Buschbaum, P., Zhou, G., Xu, X., Cheng, H.-M., 2024. An ultraflexible energy harvesting-storage system for wearable applications. Nat. Commun. 15, 6546. https://doi.org/10.1038/s41467-024-50894-w
Salleh, S., Zakariya, M.A., Ali Lee, R.M., 2021. A Comparison Study of Rectifier Designs for 2.45 GHz EM Energy Harvesting. Energy Power Eng. 13, 81–89. https://doi.org/10.4236/epe.2021.132006
Shahzad, M.A., Paracha, K.N., Naseer, S., Ahmad, S., Malik, M., Farhan, M., Ghaffar, A., Hussien, M., Sharif, A.B., 2021a. An Artificial Magnetic Conductor-Backed Compact Wearable Antenna for Smart Watch IoT Applications. Electronics 10, 2908. https://doi.org/10.3390/electronics10232908
Shahzad, M.A., Paracha, K.N., Naseer, S., Ahmad, S., Malik, M., Farhan, M., Ghaffar, A., Hussien, M., Sharif, A.B., 2021b. An Artificial Magnetic Conductor-Backed Compact Wearable Antenna for Smart Watch IoT Applications. Electronics 10, 2908. https://doi.org/10.3390/electronics10232908
Shahzad, M.A., Paracha, K.N., Naseer, S., Ahmad, S., Malik, M., Farhan, M., Ghaffar, A., Hussien, M., Sharif, A.B., 2021c. An Artificial Magnetic Conductor-Backed Compact Wearable Antenna for Smart Watch IoT Applications. Electronics 10, 2908. https://doi.org/10.3390/electronics10232908
Singh, E.D., Chaturvedi, A., 2023. Design of RF energy harvester for 700 MHz. J. Electr. Eng. 74, 302–310. https://doi.org/10.2478/jee-2023-0037
Singh, S., Verma, S., 2020. Printed compact asymmetric dual L ‐strip fed split‐ring shaped EBG‐based textile antenna for WBAN applications. Microw. Opt. Technol. Lett. 62, 3897–3904. https://doi.org/10.1002/mop.32512
Sohail, A., Ali, A., Shaukat, H., Bhatti, F.M., Ali, S., Kouritem, S.A., Noori, M., Altabey, W.A., 2024. Integrating self-powered medical devices with advanced energy harvesting: A review. Energy Strategy Rev. 52, 101328.
Soleimani, J., Karabulut Kurt, G., 2024. High‐power radio frequency wireless energy transfer system: Comprehensive survey on design challenges. IET Wirel. Sens. Syst. wss2.12089. https://doi.org/10.1049/wss2.12089
Song, Y., Min, J., Yu, Y., Wang, H., Yang, Y., Zhang, H., Gao, W., 2020. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 6, eaay9842. https://doi.org/10.1126/sciadv.aay9842
Sun, M., Gu, Y., Pei, X., Wang, J., Liu, J., Ma, C., Bai, J., Zhou, M., 2021. A flexible and wearable epidermal ethanol biofuel cell for on-body and real-time bioenergy harvesting from human sweat. Nano Energy 86, 106061.
Sun, W., Li, J., Wang, Z., Zhong, Y., Zhang, Z., Cheng, G., 2024. A wind-direction adaptive piezoelectric energy harvester employing small wing passive control configuration. Appl. Phys. Lett. 124, 233902. https://doi.org/10.1063/5.0213969
Sun, Y., Li, Y.-Z., Yuan, M., 2023. Requirements, challenges, and novel ideas for wearables on power supply and energy harvesting. Nano Energy 115, 108715.
Tachrifat, A., Bajtaoui, M., El Mrabet, O., Mohammed Ali, E., Kanja, M., Khalladi, M., 2024. Minimizing Body Impact on Wearable Rectenna Performance for Energy Harvesting Using a Huygens Source, in: 2024 International Microwave and Antenna Symposium (IMAS). Presented at the 2024 International Microwave and Antenna Symposium (IMAS), IEEE, Marrakech, Morocco, pp. 1–4. https://doi.org/10.1109/IMAS61316.2024.10818019
Trikolikar, A., Lahudkar, S., 2021. Design & simulation of dual-band rectifier for ambient RF energy harvesting. Int. J. Adv. Technol. Eng. Explor. 8. https://doi.org/10.19101/IJATEE.2021.874465
Vital, D., Bhardwaj, S., Volakis, J.L., 2020. Textile-Based Large Area RF-Power Harvesting System for Wearable Applications. IEEE Trans. Antennas Propag. 68, 2323–2331. https://doi.org/10.1109/TAP.2019.2948521
Wagih, M., Hilton, G.S., Weddell, A.S., Beeby, S., 2020. Broadband millimeter-wave textile-based flexible rectenna for wearable energy harvesting. IEEE Trans. Microw. Theory Tech. 68, 4960–4972.
Walden, R., Aazem, I., Babu, A., Pillai, S.C., 2023. Textile-Triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chem. Eng. J. 451, 138741.
Wang, C., Wang, W., Tian, R., Wen, G.-L., Wang, C.H., Lai, S.-K., 2024. Boosting biomechanical and wave energy harvesting efficiency through a novel triple hybridization of piezoelectric, electromagnetic, and triboelectric generators. Appl. Energy 374, 123876.
Xiao, T., Tu, S., Liang, S., Guo, R., Tian, T., Müller-Buschbaum, P., Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, Heinz Maier-Leibniz Zentrum (MLZ), Technical University of Munich, Lichtenbergstraße 1, 85748 Garching, Germany, 2023. Solar cell-based hybrid energy harvesters towards sustainability. Opto-Electron. Sci. 2, 230011–230011. https://doi.org/10.29026/oes.2023.230011
Yan, B., 2024. Design Research on Smart Wearable Devices: A Case Study of Apple Watch. Appl. Comput. Eng. 97, 37–42. https://doi.org/10.54254/2755-2721/97/20241403
Yang, Y., Shi, B., Huang, X., 2024. Application of Smart Wearable Devices in Athlete Health Monitoring. Appl. Math. Nonlinear Sci. 9, 20241436. https://doi.org/10.2478/amns-2024-1436
Yeo, J.-H., Kim, C.-E., 2024. A New Voltage-Doubler Rectifier for High-Efficiency LLC Resonant Converters. Energies 17, 6262. https://doi.org/10.3390/en17246262
Yuan, J., Zhu, R., 2020. A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator. Appl. Energy 271, 115250.
Zhou, Z., Chang, Y., 2021. A Novel 5.8GHz Harmonic-suppressed Rectenna for Wireless Power Transmission, in: 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium. IEEE, Chengdu, China, pp. 1–2. https://doi.org/10.23919/ACES-China52398.2021.9582094
Zhu, L., Zhang, J., Han, W., Xu, L., Bai, X., 2019. A novel RF energy harvesting cube based on air dielectric antenna arrays. Int. J. RF Microw. Comput.-Aided Eng. 29, e21636. https://doi.org/10.1002/mmce.21636
Zhu, Y., Wu, R., Wang, X., Li, J., Lin, L., 2024. A Biofuel-Cell-based Energy Harvester with 91% Peak Efficiency and Inherent Biosensor, in: 2024 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, pp. 218–219.
Younis, Wisam A., and Shamil H. Hussein. “Design of an efficient energy harvesting rectifier circuit for powering Wireless Sensor Nodes.” International Journal of Electronics and Telecommunications (2025): 325-331.