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Abstract: 

Electrocardiogram (ECG) and Photoplethysmogram (PPG) are tools that provide information about the 

cardiovascular system. The purpose of this study is to determine whether the ECG graph can be generated through 

the PPG data processing method. For this reason, a comparison is made between the feature value of normal ECG 

and the results of PPG signal processing. In this study, PPG signal processed is raw data measured with an easy 

pulse sensor on 25 normal subjects with the main method used is the second derivative of the PPG signal 

(SDPPG). There are 8 features used in this study (PR interval, P wave interval, QRS complex, RR interval, R 

wave amplitude, QT interval, T wave amplitude, and P wave amplitude) with comparison results between valid 

and invalid respectively is (15:10), (21:4), (0:25), (25:0), (25:0), (0:25), (25:0) and (25:0).These results indicate 

that the ECG graph can be generated through PPG signal processing provided that the features used are: P-wave 

interval, RR Interval, R-wave amplitude, T-wave amplitude, and P-wave amplitude. 
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1 Introduction 

Physiological rhythms or oscillations are the 

manifestation of a complex physiological system. The 

clinical community has long recognized that 

alterations in physiological rhythms are associated 

with disease and therefore have clinical value. 

Oscillations in cardiovascular systems are reflected in 

electrocardiogram (ECG) time series variability 

(Jelinek, Cornforth, and Khandoker 2017). An ECG 

is a graph of voltage with respect to time that reflects 

the electrical activities of cardiac muscle 

depolarization followed by repolarization during each 

heartbeat (Zheng et al. 2020). As a basic medical test 

in clinical settings, ECG plays a significant role in the 

diagnosis of cardiovascular diseases and is being used 

more frequently than before, since the incidence of 

cardiovascular diseases has been noticeably increased 

(Zeng 2015). 

A standard ECG has 12 leads including 6 limb 

leads (I, II, III, aVR, aVL, aVF) and 6 chest leads (V1, 

V2, V3, V4, V5, V6) recorded from electrodes on the 

body surface (Zhang et al. 2021). Each lead looks at 

the electrical activities from a different angle. 12 

leads are required for accurate diagnosis purpose; 

however, one lead can offer important information for 

quick and initial assessment of the patient (Hammad 

et al. 2018). In this study, lead II is used as a 

reference, this is because lead II can provide a good 

visualization of the most important waves in the ECG 

chart graph. 

Despite the diagnostic value of ECG, its 

implementation faces several challenges in modern 

healthcare settings. Traditional ECG monitoring 

requires specialized equipment, trained personnel, 

and multiple electrode attachments, making it 

resource-intensive (Sattar and Chhabra 2025) and less 

suitable for continuous monitoring in non-clinical 

environments. These limitations have driven research 

toward alternative cardiovascular monitoring 

methods that are more accessible, cost-effective, and 

user-friendly for both clinical and home-based 

applications. 

By convention, the main waves on the ECG are 

given the names P, Q, R, S, T and U (Figure 1). Each 

wave represents depolarization (‘electrical 

discharging’) or repolarization (‘electrical 
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recharging’) of a certain region of the heart. The 

voltage changes detected by ECG machines are very 

small, being of the order of millivolts (Houghton 

2019).  Information related to the cardiovascular 

system can be obtained from the ECG graph in the 

form of wave duration and amplitude. 

 
Figure 1: ECG Wave (Khincha et al. 2020) 

One of the methods that provide valuable 

information related to the cardiovascular system is 

photoplethysmography (W.-F. Wang, Yang, and Wu 

2018). PPG is a non-invasive and lowcost technique 

to measure blood volume change using an optical 

sensor (Hartmann et al. 2019).  Compared to ECG, 

PPG offers several advantages: it requires only a 

single point of contact, uses inexpensive optical 

components, and can be easily integrated into 

wearable devices such as smartwatches (Scardulla et 

al. 2023). These characteristics position PPG as an 

attractive alternative for continuous cardiovascular 

monitoring, particularly in remote healthcare settings 

and for long-term patient management. 

PPG measurements are carried out on body parts 

such as fingers, earlobe, and forehead (Castaneda et 

al. 2018). The main components of PPG are light 

sources and photodetectors. The light source emits 

light into the tissue and the photodetector measures 

changes in the light intensity of the body's tissues. 

The intensity of light captured by the PPG sensor will 

change along with changes in the volume of blood in 

the heart. The intensity of light captured by the PPG 

sensor will change along with changes in the volume 

of blood in the heart. 
The PPG signal itself is quite simple (consists of 

four waveforms: onset, systolic, notch, dan diastolic) 
as shown in Figure 2 and not always informative, 
therefore most clinicians check the derivatives of 
PPG waveforms to better evaluate the changes in the 
waveforms (Elgendi, Liang, and Ward 2018). 
Previous research has explored relationships between 

PPG and ECG signals, including Heart-Rate 
Variability (HRV) and Pulse-Rate Variability (PRV) 
(Chen et al. 2021; Iozzia, Cerina, and Mainardi 2016), 
arrhythmia detection (Neha et al. 2021), hypertension 
assessment (Liang et al. 2018), and blood pressure 
estimation (Podaru and David 2020). However, these 
studies have typically focused on specific parameters 
rather than comprehensive ECG feature extraction. 

 

 
Figure 2: PPG Signal Waveform (Chakraborty et al. 2020) 

Current approaches for deriving ECG features 
from PPG signals face several limitations. Time-
domain methods often struggle with noise sensitivity 
and baseline wander (Mishra and Nirala 2020), 
frequency-domain approaches may lose temporal 
information critical for identifying specific waveform 
features and also preferred for short-term 
measurements (Ahmed, Bhuiyan, and Nii 2022), 
machine learning/deep learning while promising, 
frequently require large datasets (Benfenati et al. 
2024; Wong et al. 2023) and reliability of the models 
can be affected by the quantity and diversity of the 
data (Zeynali et al. 2025). Additionally, most existing 
methods extract only rudimentary cardiovascular 
parameters from PPG (such as heart rate and pulse 
transit time) without capturing the detailed 
morphological information present in a full ECG 
waveform. 

The main objective of this study is to determine 
whether the ECG graph can be generated through the 
PPG data processing method. Specifically, we 
investigate the second derivative of the PPG signal 
(SDPPG) as a means to reconstruct ECG-like 
waveforms and validate these against standard ECG 
features. By successfully deriving ECG parameters 
from PPG signals, this research could significantly 
reduce healthcare costs, enable more widespread 
cardiovascular monitoring through consumer 
wearables, and improve patient outcomes through 
earlier detection of cardiac abnormalities in non-
clinical settings. 
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2 Methodology 

PPG signal processed is raw data measured with an 

easy pulse sensor on 25 normal subjects with a 

measurement duration of 10 seconds and sampling 

frequency of 100 Hz. Data processing is done using 

the python programming language. The stages of this 

research are shown in Figure 3. 

Filtering Signal

Z-Score Normalization

Second Derivative of PPG

Linier Normalization (Max)

Feature Extraction

Feature Validation
 

Figure 3: Stages of Research 

 

2.1 Filtering Signal 

Perform signal filter (Low-Pass Filter) to remove the 

noise of the PPG Signal [14]. The PPG signal is 

filtered in the range 0-10 Hz by applying the Infinite 

Impulse Response (IIR) filter which is expressed in 

the following equation (Krishnan 2021). 

𝑦(𝑛) = ∑ 𝑎𝑘𝑥(𝑛 − 𝑘) −

𝑁

𝑘=1

∑ 𝑏𝑙𝑦(𝑛 − 𝑙)

𝑀

𝑙=0

 (1) 

where 𝑦(𝑛) and 𝑥(𝑛) are output and input signals, 

respectively. The input filter coefficient 𝑎𝑘 and the 

output filter coefficien 𝑏𝑙 are obtained using the 

Chebyshev Type II method of order 4. This filter was 

specifically chosen for its steep roll-off 

characteristics and minimal phase distortion, which 

helps preserve the temporal relationships between 

waveform features - a critical factor when attempting 

to derive ECG-like features from PPG signals. 

 

2.2 Z-Score Normalization 

Z-score normalization aims to convert the data values 

into a common scale without distorting the difference 

in the range of values (Mukhyber, Abdulah, and 

Majeed 2021). The application of z-score 

normalization utilizes to adjust the ECG amplitude in 

the order of millivolts. The normalization of the z-

score can be expressed in the following equation 

(Prihanditya and Alamsyah 2020): 

 𝑣′ =
𝑣𝑖 − 𝐸𝑖

𝑠𝑡𝑑 (𝐸)
 (2) 

where 𝑣′ and 𝑣𝑖 are result of normalization value dan 

the value to be normalized, 𝐸𝑖 is the mean value and 

𝑠𝑡𝑑 (𝐸) is standard deviation. 

2.3 Second Derivative of PPG 

Perform the calculation of the second derivative of 

the PPG signal to obtain the ECG signal using the 

following equation. 

 
𝑓′ =

𝑓𝑝𝑝𝑔(𝑥𝑖+1) − 𝑓𝑝𝑝𝑔(𝑥𝑖−1)

2ℎ
+ 𝑂(ℎ2) (3) 

 
𝑓′′ =

𝑓′(𝑥𝑖+1) − 𝑓′(𝑥𝑖−1)

2ℎ
+ 𝑂(ℎ2) (4) 

where 𝑥𝑖 is the i-th data and and h is the distance 

between the data. 

 
Figure 4: PPG signal and its derivatives 

2.4 Linier Normalization (Max) 

This method divides the data by its maximum value 
which is expressed in the following equation 
(Mathew, Sahu, and Upadhyay 2017): 

 �̅�𝑖𝑗 =
𝑋𝑖𝑗

𝑋𝑗
𝑀𝑎𝑥 (5) 
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where 𝑋𝑗
𝑀𝑎𝑥 is the maximum amplitude of the signal. 

At this stage, the signal will be normalized with a 
maximum amplitude value of 1. 

2.5 Feature Extraction 

Feature extraction is done by detecting points P, Q, R, 
S, T, and U using local maximum and local minimum 
methods. The peak signal (local maximum) is defined 
as the sample in which the two direct neighbors have 
a higher amplitude, while the valley signal (local 
minimum) is the sample in which the two direct 
neighbors have a lower amplitude. The features used 
are the amplitude and duration of the wave. 

2.6 Feature Validation 

Feature validation is done by comparing the results of 
PPG signal processing with the value of the ECG 
signal feature on normal subjects. There are eight 
features used as shown in the Table I. 

Table 1: Feature Value of Normal ECG  

(L. Wang et al. 2009) 
Feature Value 

PR Interval 0.12-0.20 s 

P-wave Interval 0.00-0.12 s 

QRS 0.06-0.11 s 

RR Interval 0.60-1.00 s 

R-wave Amplitude >0.50 mV 

QT Interval 0.33-0.43 s 

T-wave Amplitude >0.05 mV 

P-wave Amplitude <0.25 mV 

Features obtained from PPG signal processing 
results that are within feature value of normal ECG 
range are considered valid, while those outside this 
range are considered invalid. The statistical analysis 
includes calculating the mean, standard deviation, 
and confidence interval for each feature. 

3 Result and Discussion 

In this study, a comparison was made between the 

results of PPG signal processing and the features of 

the ECG signal. This aims to determine whether the 

ECG graph can be generated through PPG signal 

processing. The main method used in this study to 

produce the ECG graphs is the second derivative of 

the PPG signal or known as the acceleration 

plethysmogram (APG) (Shahrbabaki et al. 2016). The 

following is a graph of the results of PPG signal 

processing on a normal subject as shown in (Figure 5) 

 
Figure 5: Results of PPG Signal Processing (a) in terms of 

APG Signals (b) in terms of the ECG Graph 

The results of PPG signal processing in Figure 

5(a) show the APG signal where the subject is in good 

circulation. This is because the amplitude of b-wave 

is lower than c-wave (Chatterjee and Roy 2018) 
A. P-Wave 

The first deflection of the cardiac cycle is the P-
wave caused by depolarization of the right and left 
atria. The waveform begins as the deflection leaves 
baseline and ends when the deflection returns to 
baseline (Huff 2011). In Figure 5, the P-wave 
corresponds to the peak that appeared before the 
occurrence of the a-wave on the PPG graph. 
B. PR-Interval 

The PR interval represents the time from the onset 
of atrial depolarization to the onset of ventricular 
depolarization (Huff 2011). The PR Interval includes 
a P-wave and the PR segment (normally is 
flat/isoelectric, but it may be slightly depressed or 
downsloping) (Wesley MD 2021). The PR interval is 
measured from the beginning of the P wave as it 
leaves baseline to the beginning of the QRS complex 
(Huff 2011). In Figure 5, the PR interval starts from 
the P-wave followed by a downsloping PR segment. 
C. QRS-Complex 

The QRS complex represents depolarization of 
the right and left ventricles. The QRS complex is 
larger than the P-wave because depolarization of the 
ventricles involves a larger muscle mass than 
depolarization of the atria. The QRS complex is 
composed of three wave deflections: the Q-wave, the 
R-wave, and the S-wave. The R-wave is a positive 
waveform; the Q-wave is a negative waveform that 
precedes the R-wave; the S-wave is a negative 
waveform that follows the R-wave. The QRS 
complex is measured from the beginning of the QRS 
complex (as the first wave of the complex leaves 
baseline) to the end of the QRS complex (when the 
last wave of the complex begins to level out into the 
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ST segment) (Huff 2011). In Figure 5, the Q-wave on 
the ECG graph corresponds to the valley that appears 
before the a-wave in the APG signal, the R-wave on 
the ECG graph corresponds to the b-wave of the APG 
signal, and the S-wave on the ECG graph corresponds 
to the c-wave of the APG signal. 
D. T-Wave 

The T wave represents ventricular repolarization. 
The normal T wave begins as the deflection gradually 
slopes upward from the ST segment, and ends when 
the waveform returns to baseline (Huff 2011). In Fig. 
5, T-wave corresponds to the e-wave of the APG 
signal. 
E. RR-Interval 

RR Interval normally represents one cardiac 
cycle, during with the atria and ventricles contract and 
relax once. Generally, considered to begin at the peak 
of one R-wave. Ends at the peak of the next R-wave 
(Wesley MD 2021). Based on the theoretical review, 
The RR interval in the ECG correlates closely with 
the aa interval in the APG signal, as both represent a 
completed heart cycle (Elgendi 2023). This is in 
accordance with the results obtained in Figure 5. 

The following is the result of PPG signal 
processing compared to the feature value of the 
normal ECG for all subjects (shown in Table 2). 

Table 2: Comparison Results 

ECG Features 
Number of Subjects 

Valid Invalid 

PR Interval 15 10 

P-wave Interval 21 4 

QRS Complex 0 25 

RR Interval 25 0 

R-wave Amplitude 25 0 

QT Interval 0 25 

T-wave Amplitude 25 0 

P-wave Amplitude 25 0 

In Table 2, “valid” means that the PPG signal 
processing result corresponds to the feature value of 
the normal ECG and “invalid” means that the PPG 
signal processing result does not correspond to the 
feature value of the normal ECG. Based on the results 
obtained, there are 4 ECG features (RR Interval, R-
wave amplitude, T-wave amplitude, and P-wave 
amplitude) where all subjects correspond to the 
results of PPG signal processing. Whereas the ECG 
features where all subjects did not correspond to the 
results of PPG signal processing are QRS complex 
and QT Interval. Meanwhile, the P-wave interval 
feature consists of 21 “valid” subjects and 4 “invalid” 
subjects. The PR interval feature consists of 15 

“valid” subjects and 10 “invalid” subjects. The results 
of the statistical analysis are shown in Table 3. 

 

Table 3: Statistical Analysis 

Feature Mean ± SD 
CI 95% 

(Lower and 
Upper) 

PR Interval 0.12 ±0.02 0.11-0.12 

P-wave Interval 0.14 ±0.18 0.07-0.21 

QRS Complex 0.30 ±0.02 0.29-0.31 

RR Interval 0.74 ±0.10 0.70-0.78 

R-wave Amplitude 0.95 ±0.08 0.92-0.98 

QT Interval 0.52 ±0.04 0.50-0.53 

T-wave Amplitude 0.19 ±0.08 0.16-0.22 

P-wave Amplitude 0.11 ±0.04 0.09-0.12 

The statistical analysis shown in Table 3 provides 
valuable insights into the reliability and consistency 
of ECG feature extraction from PPG signal 
processing. For features with high validity across 
subjects (RR Interval, R-wave amplitude, T-wave 
amplitude, and P-wave amplitude), the confidence 
intervals are relatively narrow, indicating good 
consistency and reliability in the measurements. For 
instance, the RR Interval shows a 95% confidence 
interval of 0.70-0.78 seconds, which falls well within 
the normal range for healthy subjects (0.60-1.00 
seconds). This suggests that PPG-derived RR 
intervals are highly reliable indicators of cardiac 
cycle length, which aligns with findings from Gil et 
al. (2010) who reported strong correlation between 
PPG and ECG-derived heart rate variability. 

The P-wave interval demonstrates a wider 
confidence interval (0.07-0.21 seconds) compared to 
other features, with a mean of 0.14 ±0.18 seconds. 
This wider variation likely contributes to the presence 
of four invalid subjects in this category. The upper 
bound of this confidence interval exceeds the normal 
range (0.00-0.12 seconds), indicating potential 
challenges in precisely identifying P-wave 
boundaries from PPG derivatives. This variability 
may be attributed to the fact that atrial electrical 
activity, which generates the P-wave in ECG, has a 
more subtle hemodynamic effect that can be difficult 
to capture consistently in peripheral blood volume 
changes detected by PPG (Charlton et al. 2022). 

For features with complete invalidity across all 
subjects (QRS complex and QT interval), the 
statistical analysis reveals systematic deviations from 
normal ECG ranges. The QRS complex derived from 
PPG processing shows a mean of 0.30 ±0.02 seconds 
with a tight confidence interval (0.29-0.31 seconds), 
which is significantly longer than the normal ECG 
range (0.06-0.11 seconds). This substantial difference 

14 



Asyrafi, H. et al    Analysis of Photoplethysmogram (PPG) Signal... 

OPEN ACCESS 
https://jmcer.org 

suggests fundamental limitations in capturing the 
rapid ventricular depolarization represented by the 
QRS complex using PPG-derived methods. 
Similarly, the QT interval shows a mean of 0.52 
±0.04 seconds (CI: 0.50-0.53 seconds), consistently 
exceeding the normal range (0.33-0.43 seconds). 

The PR interval demonstrates mixed results with 
15 valid and 10 invalid subjects. Its mean value (0.12 
±0.02 seconds) falls at the lower bound of the normal 
range (0.12-0.20 seconds) with a relatively narrow 
confidence interval (0.11-0.12 seconds). This 
suggests that while PPG-derived PR intervals can be 
valid for many subjects, they tend toward the lower 
end of normal ranges and may underestimate the 
actual PR interval in some individuals. 

These statistical findings align with the 
physiological basis of cardiac electrical and 
mechanical activity. Features that represent major 
hemodynamic events with significant blood volume 
changes (such as ventricular contraction reflected in 
R-wave amplitude) show high validity. Conversely, 
features representing primarily electrical phenomena 
with subtle hemodynamic effects (such as the QRS 
complex representing ventricular depolarization) 
show poor correlation between the PPG-derived ECG 
and the reference ECG. 

The differences observed between ECG and PPG-
derived features can be attributed to the fundamental 
distinction in what these modalities measure. While 
ECG directly captures the electrical activity of the 
heart, PPG measures the subsequent mechanical 
response in peripheral blood vessels. This 
electromechanical delay, combined with wave 
propagation effects in the vascular system, introduces 
temporal distortions that affect certain features more 
significantly than others. Additionally, the second 
derivative of PPG (SDPPG) enhances the detection of 
inflection points in the original waveform but may 
also amplify noise and artifacts. This could contribute 
to the inconsistencies observed in features like PR 
interval and P-wave interval. The strong performance 
of amplitude-related features (R-wave, T-wave, and 
P-wave amplitudes) suggests that relative magnitude 
relationships in the SDPPG signal are well-preserved 
and correlate well with their ECG counterparts after 
appropriate normalization. 

The existence of ECG features that are not in 
accordance with the results of PPG signal processing 
may be due to the fundamental difference between the 
ECG and PPG principles. ECG represents the 
electrical signal that comes from the contraction of 
the heart muscles (Brás et al. 2018), while PPG 
represents the variations in blood volume or blood 
flow in the body (Panda, Pinisetty, and Roop 2022). 
However, ECG indirectly representing the flow of 
blood inside the heart (Brás et al. 2018). 

Our statistical analysis supports the conclusion 
that while PPG-derived methods cannot fully replace 
standard 12-lead ECG for comprehensive cardiac 
assessment, they can reliably extract specific features 
that are clinically relevant for monitoring purposes. 
This has significant implications for wearable health 
monitoring technologies, where PPG sensors are 
more practical and user-friendly than multi-lead ECG 
systems.  

4 Conclusions 

Comparison results of PPG signal processing with 

ECG normal feature between valid and invalid are PR 

interval (15:10), P-wave interval (21:4), QRS 

complex (0:25), RR interval (25:0), R-wave 

amplitude (25:0), QT interval (0:25), T-wave 

amplitude (25:0), and P-wave amplitude (25:0). 

Statistical analysis provides strong support for the 

validity of specific features, with RR interval (mean: 

0.74 ±0.10 s), R-wave amplitude (mean: 0.95 ±0.08 

mV), T-wave amplitude (mean: 0.19 ±0.08 mV), and 

P-wave amplitude (mean: 0.11 ±0.04 mV) all 

showing consistent correlation between PPG signal 

processing and ECG measurements. The P-wave 

interval (mean: 0.14 ±0.18 s) demonstrates high but 

not complete validity, while PR interval (mean: 0.12 

±0.02 s) shows moderate agreement. In contrast, QRS 

complex (mean: 0.30 ±0.02 s) and QT interval (mean: 

0.52 ±0.04 s) consistently fall outside normal ECG 

ranges, indicating fundamental limitations in deriving 

these specific electrical events from PPG signals. 

Thus, it can be concluded that while PPG signal 

processing cannot fully replace standard ECG for 

comprehensive cardiac assessment, it can reliably 

extract specific ECG features with high accuracy. The 

findings demonstrate that PPG-derived methods can 

effectively reproduce the following ECG parameters: 

P-wave interval, RR interval, R-wave amplitude, T-

wave amplitude, and P-wave amplitude. These results 

have significant implications for the development of 

more accessible and user-friendly cardiovascular 

monitoring technologies that could complement 

traditional ECG in various healthcare settings 
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